A new functional analytic approach to robust utility maximization in the dominated case

Julio Daniel Backhoff

Humboldt-Universität zu Berlin Universität Wien

Joint work with Joaquín Fontbona of Universidad de Chile

I thank the Berlin Mathematical School for full support.

Part of this work was undertaken during a visit to the Hausdorff Research Institute for Mathematics at the University of

Bonn within the Trimester Program Stochastic Dynamics in Economics and Finance.

NOVEMBER, 2014

Julio Daniel Backhoff ()

Workshop London Nov. 2014

29/11/2014 1 / 20

Introduction

- Utility maximization in continuous time financial markets
- The convex duality approach
- Robust problem under "model compactness"
- Open questions and motivation
- 2 Robust problem without model compactness
 - A Modular space formulation
 - Our main result
- Worst-case measure for "linear uncertainty" in complete case
 Setting and an abstract result
 Example

Conclusions, open problems

A (1) > (1) > (1) > (1)

Introduction

- Utility maximization in continuous time financial markets
- The convex duality approach
- Robust problem under "model compactness"
- Open questions and motivation
- 2 Robust problem without model compactness
 - A Modular space formulation
 - Our main result

Worst-case measure for "linear uncertainty" in complete case
 Setting and an abstract result
 Example

4 Conclusions, open problems

Introduction

- Utility maximization in continuous time financial markets
- The convex duality approach
- Robust problem under "model compactness"
- Open questions and motivation
- Robust problem without model compactness
 - A Modular space formulation
 - Our main result
- 3 Worst-case measure for "linear uncertainty" in complete case
 - Setting and an abstract result
 - Example

Introduction

- Utility maximization in continuous time financial markets
- The convex duality approach
- Robust problem under "model compactness"
- Open questions and motivation
- Robust problem without model compactness
 - A Modular space formulation
 - Our main result
- 3 Worst-case measure for "linear uncertainty" in complete case
 - Setting and an abstract result
 - Example
- 4 Conclusions, open problems

Julio Daniel Backhoff ()

Workshop London Nov. 2014

29/11/2014 3 / 20

Continuous Time Financial Market

- Filtered probability space (Ω, 𝔽, (𝟸)_{t≤𝒯}, 𝒫), 𝒫 reference law.
- Market consists of *d* stocks and a risk-less bond, $S = (S^i)_{0 \le i \le d}$.
- S continuous (or loc. bounded) semimartingale.
- The value of portfolio (X_0, π) at time *t* is $X_t = X_0 + \int_0^t \pi_u dS_u$.
- $\mathcal{M}^{e}(S) = \left\{ \tilde{\mathbb{P}} \sim \mathbb{P} : S \text{ is a } \tilde{\mathbb{P}} \text{-loc. martingale} \right\} \neq \emptyset.$

Admissible wealths starting from *x*

$$\mathcal{X}(x) = \left\{ X \ge 0 : X_t = X_0 + \int_0^t H_u dS_u \text{ with } X_0 \le x
ight\}$$

Utility Functions on $(0,\infty)$

 $U: (0, \infty) \to (-\infty, \infty)$ is strictly increasing, strictly concave and continuously differentiable. It satisfies *INADA* if $U'(0+) = \infty$ and $U'(\infty) = 0$. Its asymptotic elasticity is $AE(U) := \limsup \frac{xU'(x)}{U(x)}$.

Utility maximization problems

Standard utility maximization

Agent tries to maximize expected final utility starting from x > 0, under the fixed (subjective) model $\mathbb{Q} \cong \mathbb{P}$. Value function is

$$u_{\mathbb{Q}}(x) := \sup_{X \in \mathcal{X}(x)} \mathbb{E}^{\mathbb{Q}}[U(X_T)].$$

Robust utility maximization

Actual probabilistic model (law) possibly unknown (model uncertainty) but there is a set Q of reasonable possible models. Pessimistic agent tries to maximize expected final utility of the worst-case model. Value function is

$$u(x) := \sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}[U(X_T)].$$

(D) (A) (B) (B)

Utility maximization problems

Standard utility maximization

Agent tries to maximize expected final utility starting from x > 0, under the fixed (subjective) model $\mathbb{Q} \cong \mathbb{P}$. Value function is

$$u_{\mathbb{Q}}(x) := \sup_{X \in \mathcal{X}(x)} \mathbb{E}^{\mathbb{Q}}[U(X_T)].$$

Robust utility maximization

Actual probabilistic model (law) possibly unknown (model uncertainty) but there is a set Q of reasonable possible models. Pessimistic agent tries to maximize expected final utility of the worst-case model. Value function is

$$u(x) := \sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}[U(X_T)].$$

< ロ > < 同 > < 三 > < 三 >

Duality in financial market models

 $V(y) := \sup_{x>0} [U(x) - xy], y > 0 \text{ conjugate of } U.$

"Supermartingale densities " w.r.t. (subjective) model \mathbb{Q} $\mathcal{Y}_{\mathbb{Q}}(y) := \{Y \ge 0, YX \text{ is a } \mathbb{Q} - \text{supermartingale } \forall X \in \mathcal{X}(1), Y_0 = y\}.$ Generalizes set of densities wrt. \mathbb{Q} of e.g. risk-neutral measures.

For all $x > 0, X \in \mathcal{X}(x), \mathbb{Q}$,

$$\mathbb{E}^{\mathbb{Q}}[U(X_{\mathcal{T}})] \leq \inf_{y > 0} \left(\inf_{Y \in \mathcal{Y}_{\mathbb{Q}}(y)} \mathbb{E}^{\mathbb{Q}}[V(Y_{\mathcal{T}})] + xy \right)$$

 $\implies v_{\mathbb{Q}}(y) := \inf_{Y \in \mathcal{Y}_{\mathbb{Q}}(y)} \mathbb{E}^{\mathbb{Q}}[V(Y_{\mathcal{T}})] \text{ candidate conjugate of } u_{\mathbb{Q}}(x),$

 \implies $v(y) := \inf_{\mathbb{Q} \in \mathcal{Q}} v_{\mathbb{Q}}(y)$ candidate conjugate of u(x).

Julio Daniel Backhoff ()

Workshop London Nov. 2014

Duality in financial market models

$$V(y) := \sup_{x>0} [U(x) - xy], y > 0 \text{ conjugate of } U.$$

"Supermartingale densities " w.r.t. (subjective) model \mathbb{Q} $\mathcal{Y}_{\mathbb{Q}}(y) := \{Y \ge 0, YX \text{ is a } \mathbb{Q} - \text{supermartingale } \forall X \in \mathcal{X}(1), Y_0 = y\}.$ Generalizes set of densities wrt. \mathbb{Q} of e.g. risk-neutral measures.

For all $x > 0, X \in \mathcal{X}(x), \mathbb{Q}$,

$$\mathbb{E}^{\mathbb{Q}}[U(X_{\mathcal{T}})] \leq \inf_{y>0} \left(\inf_{Y \in \mathcal{Y}_{\mathbb{Q}}(y)} \mathbb{E}^{\mathbb{Q}}[V(Y_{\mathcal{T}})] + xy \right)$$

 $\implies v_{\mathbb{Q}}(y) := \inf_{Y \in \mathcal{Y}_{\mathbb{Q}}(y)} \mathbb{E}^{\mathbb{Q}}[V(Y_{\mathcal{T}})] \text{ candidate conjugate of } u_{\mathbb{Q}}(x),$

 \implies $v(y) := \inf_{\mathbb{Q} \in \mathcal{Q}} v_{\mathbb{Q}}(y)$ candidate conjugate of u(x).

Julio Daniel Backhoff ()

Workshop London Nov. 2014

29/11/2014 5 / 20

Duality in financial market models

$$V(y) := \sup_{x>0} [U(x) - xy], y > 0 \text{ conjugate of } U.$$

"Supermartingale densities "w.r.t. (subjective) model \mathbb{Q} $\mathcal{Y}_{\mathbb{Q}}(y) := \{Y \ge 0, YX \text{ is a } \mathbb{Q} - \text{supermartingale } \forall X \in \mathcal{X}(1), Y_0 = y\}.$ Generalizes set of densities wrt. \mathbb{Q} of e.g. risk-neutral measures.

For all $x > 0, X \in \mathcal{X}(x), \mathbb{Q}$,

$$\mathbb{E}^{\mathbb{Q}}[U(X_{\mathcal{T}})] \leq \inf_{y > 0} \left(\inf_{Y \in \mathcal{Y}_{\mathbb{Q}}(y)} \mathbb{E}^{\mathbb{Q}}[V(Y_{\mathcal{T}})] + xy \right)$$

 $\implies \textit{v}_{\mathbb{Q}}(\textit{y}) := \inf_{\textit{Y} \in \mathcal{Y}_{\mathbb{Q}}(\textit{y})} \mathbb{E}^{\mathbb{Q}}[\textit{V}(\textit{Y}_{T})] \text{ candidate conjugate of } u_{\mathbb{Q}}(x),$

 $\implies v(y) := \inf_{\mathbb{Q} \in \mathcal{Q}} v_{\mathbb{Q}}(y) \text{ candidate conjugate of } u(x).$

Robust case under model compactness

- Dual involves $v(y) = \inf_{\mathbb{Q} \in \mathcal{Q}} \inf_{Y \in \mathcal{Y}_{\mathbb{P}}(y)} \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}} V\left(\frac{Y_T}{d\mathbb{Q}/d\mathbb{P}}\right)\right].$
- Primal requires Minimax: $\sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}} [U(X_T)] = \inf_{\mathbb{Q} \in \mathcal{Q}} u_{\mathbb{Q}}(x).$

Conditions on Q are needed. [SchiedWu05] consider:

 $\bigcirc \mathcal{Q} \text{ convex},$

- $\exists \underline{dQ}_{d\mathbb{P}} := \left\{ \frac{d\mathbb{Q}}{d\mathbb{P}} : \mathbb{Q} \in \mathcal{Q} \right\} \text{ closed in } L^0(\mathbb{P}) \text{ (equiv. } \sigma(L^1, L^\infty) \textbf{compact}).$

Theorem ([SchiedWu05] (see also Gundel \sim 03))

Then minimax equality holds and u, v are conjugate. Under additional assumptions (e.g. AE(U) < 1), everything is attained:

$$u(x) = u_{\hat{\mathbb{Q}}}(x), \quad \hat{X}_{\mathcal{T}} = (U')^{-1}(\hat{Y}_{\mathcal{T}}/\hat{Z}_{\mathcal{T}})$$

where $\hat{y} \in \partial u(x)$, $\hat{Y} \in \mathcal{Y}(\hat{y})$ and the pair $\left(\hat{Z} = \frac{d\hat{\mathbb{Q}}}{d\mathbb{P}}, \hat{Y}\right)$ attains the double infimum in the dual problem for such (x, \hat{y}) .

Robust case under model compactness

- Dual involves $v(y) = \inf_{\mathbb{Q} \in \mathcal{Q}} \inf_{Y \in \mathcal{Y}_{\mathbb{P}}(y)} \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}} V\left(\frac{Y_T}{d\mathbb{Q}/d\mathbb{P}}\right)\right].$
- Primal requires Minimax: $\sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}} \left[U(X_T) \right] = \inf_{\mathbb{Q} \in \mathcal{Q}} u_{\mathbb{Q}}(x).$

Conditions on \mathcal{Q} are needed. [SchiedWu05] consider:

1
$$Q$$
 convex,
2 $\mathbb{P}(A) = 0 \iff \mathbb{Q}(A) = 0 \forall \mathbb{Q} \in Q$, and
3 $\frac{dQ}{d\mathbb{P}} := \left\{ \frac{d\mathbb{Q}}{d\mathbb{P}} : \mathbb{Q} \in Q \right\}$ closed in *L*⁰(\mathbb{P}) (equiv. $\sigma(L^1, L^\infty)$ −compact).

Theorem ([SchiedWu05] (see also Gundel \sim 03))

Then minimax equality holds and u, v are conjugate. Under additional assumptions (e.g. AE(U) < 1), everything is attained:

$$u(x) = u_{\hat{\mathbb{Q}}}(x), \quad \hat{X}_{\mathcal{T}} = (U')^{-1}(\hat{Y}_{\mathcal{T}}/\hat{Z}_{\mathcal{T}})$$

where $\hat{y} \in \partial u(x)$, $\hat{Y} \in \mathcal{Y}(\hat{y})$ and the pair $\left(\hat{Z} = \frac{d\hat{\mathbb{Q}}}{d\mathbb{P}}, \hat{Y}\right)$ attains the double infimum in the dual problem for such (x, \hat{y}) .

Robust case under model compactness

- Dual involves $v(y) = \inf_{\mathbb{Q} \in \mathcal{Q}} \inf_{Y \in \mathcal{Y}_{\mathbb{P}}(y)} \mathbb{E} \left[\frac{d\mathbb{Q}}{d\mathbb{P}} V \left(\frac{Y_{\mathcal{T}}}{d\mathbb{Q}/d\mathbb{P}} \right) \right].$
- Primal requires Minimax: $\sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}} [U(X_T)] = \inf_{\mathbb{Q} \in \mathcal{Q}} u_{\mathbb{Q}}(x).$

Conditions on \mathcal{Q} are needed. [SchiedWu05] consider:

Theorem ([SchiedWu05] (see also Gundel \sim 03))

Then minimax equality holds and u, v are conjugate. Under additional assumptions (e.g. AE(U) < 1), everything is attained:

$$u(x) = u_{\hat{\mathbb{Q}}}(x), \quad \hat{X}_{T} = (U')^{-1}(\hat{Y}_{T}/\hat{Z}_{T})$$

where $\hat{y} \in \partial u(x)$, $\hat{Y} \in \mathcal{Y}(\hat{y})$ and the pair $\left(\hat{Z} = \frac{d\hat{\mathbb{Q}}}{d\mathbb{P}}, \hat{Y}\right)$ attains the double infimum in the dual problem for such (x, \hat{y}) .

Open questions and our motivation

- No general characterization of Q̂.
- There are simple (and reasonable) uncertainty sets, that are not weakly compact in L¹(P). e.g.:

$$\mathcal{Q} = \{\mathbb{Q} \ll \mathbb{P} : \mathbb{E}^{\mathbb{Q}}[S_T] \ge A\}, \quad A > 0.$$

More generally, $\ensuremath{\mathcal{Q}}$ determined by "moment" or distributional constraints

$$\mathcal{Q} = \bigcap_{i} \{ \mathbb{Q} \ll \mathbb{P} : \mathbb{E}^{\mathbb{Q}}[F_{i}(S)] \in C_{i} \}$$

arise naturally and may fail to be compact.

- Goal: Find a framework to study the above problems.
- Goal: use general convex duality to describe the worst measure.

(0) (A) (A) (A)

Open questions and our motivation

- No general characterization of $\hat{\mathbb{Q}}$.
- There are simple (and reasonable) uncertainty sets, that are not weakly compact in L¹(P). e.g.:

$$\mathcal{Q} = \{ \mathbb{Q} \ll \mathbb{P} : \mathbb{E}^{\mathbb{Q}}[S_T] \ge A \}, \quad A > 0.$$

More generally, $\ensuremath{\mathcal{Q}}$ determined by "moment" or distributional constraints

$$\mathcal{Q} = \bigcap_{i} \{ \mathbb{Q} \ll \mathbb{P} : \mathbb{E}^{\mathbb{Q}}[F_{i}(S)] \in C_{i} \}$$

arise naturally and may fail to be compact.

- Goal: Find a framework to study the above problems.
- Goal: use general convex duality to describe the worst measure.

Modular spaces in the robust problem

Assumption

Our U satisfies INADA, $U \ge 0$ and $U(\infty) = \infty$.

We know:

$$u(x) = \sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}} \left[U(X_{T}) \right] \leq \inf_{y \geq 0} \left[\inf_{\substack{\mathbb{Q} \in \mathcal{Q}_{e} \\ Y \in \mathcal{Y}_{\mathbb{P}}(1)}} \mathbb{E}^{\mathbb{P}} \left[\frac{d\mathbb{Q}}{d\mathbb{P}} V\left(\frac{yY_{T}}{\frac{d\mathbb{Q}}{d\mathbb{P}}} \right) \right] + xy \right],$$

Thus, we care only of $\mathbb{Q} \in \mathcal{Q}$ such that $Z := \frac{d\mathbb{Q}}{d\mathbb{P}}$ belongs to the **Modular** space (more on it later on...):

$$L_I = \left\{ Z \in L^0(\mathbb{P}) \text{ s.t. } \exists lpha > \mathsf{0}, I(lpha Z) < \infty
ight\}$$

where $I(z) := \inf_{Y \in \mathcal{Y}_{\mathbb{P}}(1)} \mathbb{E}^{\mathbb{P}} \left| |z| V \left(\frac{Y_{T}(\omega)}{|z|} \right) \right|$

Julio Daniel Backhoff ()

Workshop London Nov. 2014

・ロット (雪) (日) (日)

Modular spaces in the robust problem

Assumption

Our U satisfies INADA, $U \ge 0$ and $U(\infty) = \infty$.

We know:

$$u(x) = \sup_{X \in \mathcal{X}(x)} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}} \left[U(X_T) \right] \leq \inf_{y \geq 0} \left[\inf_{\substack{\mathbb{Q} \in \mathcal{Q}_e \\ Y \in \mathcal{Y}_{\mathbb{P}}(1)}} \mathbb{E}^{\mathbb{P}} \left[\frac{d\mathbb{Q}}{d\mathbb{P}} V\left(\frac{yY_T}{\frac{d\mathbb{Q}}{d\mathbb{P}}} \right) \right] + xy \right],$$

Thus, we care only of $\mathbb{Q} \in \mathcal{Q}$ such that $Z := \frac{d\mathbb{Q}}{d\mathbb{P}}$ belongs to the **Modular** space (more on it later on...):

$$\mathcal{L}_{I} = \left\{ Z \in \mathcal{L}^{0}(\mathbb{P}) \text{ s.t. } \exists lpha > 0, \mathit{I}(lpha Z) < \infty
ight\}$$

where $I(z) := \inf_{Y \in \mathcal{Y}_{\mathbb{P}}(1)} \mathbb{E}^{\mathbb{P}}\left[|z| V\left(\frac{Y_{T}(\omega)}{|z|} \right) \right].$

Convex Modular

- $I: L_I \mapsto [0, \infty]$ is a Convex Modular (and L_I its Modular Space), since:
 - *I*(0) = 0
 - I(Z) = I(-Z)
 - For every $Z \in L_I$ there exists $\alpha > 0$ st. $I(\alpha Z) < \infty$
 - $[I(\xi Z) = 0$ for every $\xi > 0]$ implies Z = 0
 - I is convex
 - $I(Z) = \sup_{0 \le \xi < 1} I(\xi Z)$

We may apply theory of [Musielak] or [Nakano]:

• $|Z|_I^I := \inf\{\alpha > 0 : I(Z/\alpha) \le 1\}$ and $|Z|_I^a := \inf\{\frac{1}{k} + \frac{I(kZ)}{k} : k > 0\}$ are equivalent norms

Relation to the robust problem

Suppose $dQ/d\mathbb{P} \subset L_I$:

• If $Z := d\mathbb{Q}/d\mathbb{P} \in L_l$ then $C(x)|Z|_l \ge u_{\mathbb{Q}}(x) \ge c(x)|Z|_l$

• Notice v(y) = y inf_Z I(Z/y) and $|Z|_I^a \le 1 + I(Z)$

• So if L_l is reflexive or l inf-compact, v(y) is attained \Rightarrow We must explore topology of L_l and related spaces ... Let us define:

$$E_{I} = \left\{ Z \in L^{0} \text{ s.t. } \forall \alpha > 0, I(\alpha Z) < \infty \right\}$$

 $J(X) = \sup_{Y \in \mathcal{Y}_{\mathbb{P}}(1)} \mathbb{E}[YU^{-1}(X)]$ and L_J, E_J accordingly

Technical assumption: I, J remain the same when computed using $\{Y \in \mathcal{Y}_{\mathbb{P}}(1) : Y_{\mathcal{T}} > 0 \text{ and } \forall \beta > 0, \mathbb{E}[V(\beta Y)] < \infty\}$ instead of $\mathcal{Y}_{\mathbb{P}}(1)$

Relation to the robust problem

Suppose $dQ/d\mathbb{P} \subset L_I$:

- If $Z := d\mathbb{Q}/d\mathbb{P} \in L_l$ then $C(x)|Z|_l \ge u_{\mathbb{Q}}(x) \ge c(x)|Z|_l$
- Notice $v(y) = y \inf_Z I(Z/y)$ and $|Z|_I^a \le 1 + I(Z)$
- So if L_I is reflexive or I inf-compact, v(y) is attained

 \Rightarrow We must explore topology of L_l and related spaces ... Let us define:

$$E_{I} = \left\{ Z \in L^{0} \text{ s.t. } \forall \alpha > 0, I(\alpha Z) < \infty \right\}$$

 $J(X) = \sup_{Y \in \mathcal{Y}_{\mathbb{P}}(1)} \mathbb{E}[YU^{-1}(X)] \text{ and } L_J, E_J \text{ accordingly}$

Technical assumption: I, J remain the same when computed using $\{Y \in \mathcal{Y}_{\mathbb{P}}(1) : Y_{\mathcal{T}} > 0 \text{ and } \forall \beta > 0, \mathbb{E}[V(\beta Y)] < \infty\}$ instead of $\mathcal{Y}_{\mathbb{P}}(1)$

Relation to the robust problem

Suppose $dQ/d\mathbb{P} \subset L_I$:

- If $Z := d\mathbb{Q}/d\mathbb{P} \in L_l$ then $C(x)|Z|_l \ge u_{\mathbb{Q}}(x) \ge c(x)|Z|_l$
- Notice $v(y) = y \inf_Z I(Z/y)$ and $|Z|_I^a \le 1 + I(Z)$
- So if L_I is reflexive or I inf-compact, v(y) is attained
- \Rightarrow We must explore topology of L_I and related spaces ... Let us define:

$$E_{I} = \left\{ Z \in L^{0} \text{ s.t. } \forall \alpha > 0, I(\alpha Z) < \infty \right\}$$

$$J(X) = \sup_{Y \in \mathcal{Y}_{\mathbb{P}}(1)} \mathbb{E}[YU^{-1}(X)] \text{ and } L_J, E_J \text{ accordingly}$$

Technical assumption: I, J remain the same when computed using $\{Y \in \mathcal{Y}_{\mathbb{P}}(1) : Y_T > 0 \text{ and } \forall \beta > 0, \mathbb{E}[V(\beta Y)] < \infty\}$ instead of $\mathcal{Y}_{\mathbb{P}}(1)$

Topology

Under the technical assumption:

Theorem ([B.,Fontbona14])

- Hölder inequality holds between L_I and L_J
- The dual of E₁ is isom. isomorphic to L_J

Most importantly:

Theorem ([B.,Fontbona14])

If $\mathcal{Y}_{\mathbb{P}}(1)$ is **not** *u.i.*, then E_l and L_l **cannot** be reflexive.

• In the complete case $\mathcal{Y}_{\mathbb{P}}(1)$ is u.i.

In the incomplete case this happens in pathological cases only.

Main result

Theorem ([B.,Fontbona14])

Under the technical assumption (e.g. $1 \in \mathcal{Y}_{\mathbb{P}}(1)$) and:

- \mathcal{Q} is convex and $\mathcal{Q}_e \neq \emptyset$
- $\mathbb{P}(A) = 0 \iff \forall \mathbb{Q} \in \mathcal{Q} : \mathbb{Q}(A) = 0$
- $\frac{dQ}{d\mathbb{P}} \cap L_I(\mathbb{P})$ is $\sigma(L_I, L_J)$ -closed and $\exists \mathbb{Q} \in Q_e$ s.t. $u_{\mathbb{Q}}(\cdot) < \infty$

If $L_I = E_I$ (e.g. AE(U) < 1), then the minimax equality holds, u and v are conjugate and there is an optimal $X \in \mathcal{X}(x)$.

If further E_I is reflexive (e.g. market completeness + $U^{-1} \in \Delta_2$) then there is a worst $\hat{\mathbb{Q}} \in \mathcal{Q}$ and most results in [SchiedWu05] hold also.

Central arguments:
U(X(x)) contained in weak*-compact set in L_J.
Under reflexivity, simply use subsequence principle in E_I.

Julio Daniel Backhoff ()

Workshop London Nov. 2014

29/11/2014 12 / 20

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Main result

Theorem ([B.,Fontbona14])

Under the technical assumption (e.g. $1 \in \mathcal{Y}_{\mathbb{P}}(1)$) and:

- \mathcal{Q} is convex and $\mathcal{Q}_e \neq \emptyset$
- $\mathbb{P}(A) = 0 \iff \forall \mathbb{Q} \in \mathcal{Q} : \mathbb{Q}(A) = 0$
- $\frac{dQ}{d\mathbb{P}} \cap L_I(\mathbb{P})$ is $\sigma(L_I, L_J)$ -closed and $\exists \mathbb{Q} \in Q_e$ s.t. $u_{\mathbb{Q}}(\cdot) < \infty$

If $L_I = E_I$ (e.g. AE(U) < 1), then the minimax equality holds, u and v are conjugate and there is an optimal $X \in \mathcal{X}(x)$.

If further E_I is reflexive (e.g. market completeness + $U^{-1} \in \Delta_2$) then there is a worst $\hat{\mathbb{Q}} \in \mathcal{Q}$ and most results in [SchiedWu05] hold also.

Central arguments:

- $U(\mathcal{X}(x))$ contained in weak*-compact set in L_J .
- Under reflexivity, simply use subsequence principle in *E*₁.

・ロン ・ロン ・ロン ・ロン

Uncertainty set as linear/convex constraints

We consider uncertainty set \mathcal{Q} such that

$$\frac{d\mathcal{Q}}{d\mathbb{P}} = \left\{ \frac{d\mathbb{Q}}{d\mathbb{P}} \in L_I : \Theta\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right) \in C \right\}$$

for $\Theta : L_l(\Omega, \mathbb{P}) \to B$ a linear operator of integral type, taking values in some vector space *B* (possibly ∞ -dim.) and $C \subseteq B$ a convex subset.

More precisely, there is a measurable function $\theta : \Omega \rightarrow B$ such that

$$\Theta(Z) = \mathbb{E}^{\mathbb{P}}(Z heta) \in B$$

This includes moment constraints on "observables" of any dimension; in particular, any restriction (or belief) of distributional type on prices or assets can be described in this way

Uncertainty set as convex constraints: complete case Minimization problem is embedded into the space M_f of finite signed measures \mathbb{M} on Ω :

$$\Phi(\mathbb{M}) := \begin{cases} I\left(\frac{d\mathbb{M}}{d\mathbb{P}}\right) = \int \frac{d\mathbb{M}}{d\mathbb{P}} V\left(\left[\frac{d\mathbb{M}}{d\mathbb{P}}\right]^{-1}\right) \mathbb{P}(d\omega) & \text{ if } \mathbb{M} \ge 0 \text{ and } \mathbb{M} \ll \mathbb{P} \\ +\infty & \text{ otherwise} \end{cases}$$

adding the constraint $\mathbb{E}^{\mathbb{P}}(\frac{d\mathbb{M}}{d\mathbb{P}}) = 1$. We want:

PC

 $\begin{array}{ll} \textit{Minimize } \Phi(\mathbb{M}) & \text{subject to} & \Theta_1(\mathbb{M}) \in C_1 & , \ \mathbb{M} \in \mathcal{M}_f \\ \\ \text{where } \Theta_1(\mathbb{M}) = (\int_{\Omega} \theta d\mathbb{M}, \int_{\Omega} 1 d\mathbb{M}) \in B_1 = B \times \mathbb{R} \text{ and } C_1 = C \times \{1\} \end{array}$

DC

$$\sup\left\{\inf_{x\in\bar{B}_1\cap C_1}\langle g,x\rangle-\int U^{-1}(\langle g,\theta(\cdot)\rangle)d\mathbb{P}:g\in B_1^*\right\}$$

Julio Daniel Backhoff ()

Workshop London Nov. 2014

29/11/2014 14 / 20

Uncertainty set as convex constraints: complete case Minimization problem is embedded into the space M_f of finite signed measures \mathbb{M} on Ω :

$$\Phi(\mathbb{M}) := \begin{cases} I\left(\frac{d\mathbb{M}}{d\mathbb{P}}\right) = \int \frac{d\mathbb{M}}{d\mathbb{P}} V\left(\left[\frac{d\mathbb{M}}{d\mathbb{P}}\right]^{-1}\right) \mathbb{P}(d\omega) & \text{ if } \mathbb{M} \ge 0 \text{ and } \mathbb{M} \ll \mathbb{P} \\ +\infty & \text{ otherwise} \end{cases}$$

adding the constraint $\mathbb{E}^{\mathbb{P}}(\frac{d\mathbb{M}}{d\mathbb{P}}) = 1$. We want:

PC

 $\begin{array}{ll} \textit{Minimize} \ \Phi(\mathbb{M}) & \text{subject to} & \Theta_1(\mathbb{M}) \in C_1 &, \ \mathbb{M} \in \mathcal{M}_f \\ \\ \text{where} \ \Theta_1(\mathbb{M}) = (\int_\Omega \theta d\mathbb{M}, \int_\Omega 1 d\mathbb{M}) \in B_1 = B \times \mathbb{R} \ \text{and} \ C_1 = C \times \{1\} \end{array}$

DC

$$\sup\left\{\inf_{x\in\bar{B}_1\cap C_1}\langle g,x\rangle-\int U^{-1}(\langle g,\theta(\cdot)\rangle)d\mathbb{P}:g\in B_1^*\right\}$$

Julio Daniel Backhoff ()

Workshop London Nov. 2014

Uncertainty set as convex constraints: complete case Minimization problem is embedded into the space M_f of finite signed measures \mathbb{M} on Ω :

$$\Phi(\mathbb{M}) := \begin{cases} I\left(\frac{d\mathbb{M}}{d\mathbb{P}}\right) = \int \frac{d\mathbb{M}}{d\mathbb{P}} V\left(\left[\frac{d\mathbb{M}}{d\mathbb{P}}\right]^{-1}\right) \mathbb{P}(d\omega) & \text{ if } \mathbb{M} \ge 0 \text{ and } \mathbb{M} \ll \mathbb{P} \\ +\infty & \text{ otherwise} \end{cases}$$

adding the constraint $\mathbb{E}^{\mathbb{P}}(\frac{d\mathbb{M}}{d\mathbb{P}}) = 1$. We want:

PC

 $\begin{array}{ll} \textit{Minimize} \ \Phi(\mathbb{M}) & \text{subject to} & \Theta_1(\mathbb{M}) \in C_1 &, \ \mathbb{M} \in \mathcal{M}_f \\ \\ \text{where} \ \Theta_1(\mathbb{M}) = (\int_\Omega \theta d\mathbb{M}, \int_\Omega 1 d\mathbb{M}) \in B_1 = B \times \mathbb{R} \ \text{and} \ C_1 = C \times \{1\} \end{array}$

DC

$$\sup\left\{\inf_{x\in\bar{B}_1\cap C_1}\langle g,x\rangle-\int U^{-1}(\langle g,\theta(\cdot)\rangle)d\mathbb{P}:g\in B_1^*\right\}$$

Julio Daniel Backhoff ()

Workshop London Nov. 2014

Finding the minimizer

We adapt some results in [Léonard08], since our functions do not fulfil a relevant hypothesis therein...

Theorem ([B.,Fontbona14])

Under above assumptions and ours on U, V:

- There is dual equality PC = DC
- If $C_1 \cap \Theta_1(dom(\Phi)) \neq \emptyset$, PC has a unique solution in L_I
- If moreover C₁ ∩ icor(Θ₁(dom(Φ))) ≠ Ø the solution of PC is given by

$$\hat{\mathbb{Q}} = rac{dU^{-1}}{dz} (< ilde{g}, heta>) d\mathbb{P}.$$

where *g̃* solves DC.

Here, $icor(A) = \{a \in A | \forall x \in aff(A), \exists t > 0 \text{ tq. } a + t(x - a) \in A\}.$

・ロン ・ 「 ・ ・ ヨン ・ ヨン ・ ヨー

Example

Consider on $\left(\Omega, \mathbb{F}, \{\mathcal{F}_t\}_{t=0}^T, \mathbb{P}\right)$, and for $t \leq T$, the 1d-diffusion

$$dS_t = S_t \{ bdt + \sigma dW_t \}, \ S_0 = 1$$

Unique risk neutral measure is $d\mathbb{P}^*/d\mathbb{P} = \exp\left\{-\frac{b}{\sigma}W_T - \frac{b^2}{2\sigma^2}T\right\}$.

- We take $U(x) = 2\sqrt{x}$, $x \in (0, \infty)$, thus $L_I = L^2$.
- For $A \ge 0$, consider the uncertainty set

$$\mathcal{Q} = \{\mathbb{Q} \ll \mathbb{P} : \mathbb{E}^{\mathbb{Q}}(\mathcal{S}_{\mathcal{T}}) \geq \mathcal{A}\}$$

which is not closed in L^0 and not bounded in L^2 , but is weakly closed in L^2 .

- Constraint qualification condition holds by Girsanov Thm.
- We now assume $e^{\sigma^2 T} > A > 1$ for simplicity.

Solution

By Fenchel duality, it follows:

$$\inf_{\mathbb{Q}\in\mathcal{Q}}\mathbb{E}^{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}V\left(yY_{T}\frac{d\mathbb{P}}{d\mathbb{Q}}\right)\right] = \sup_{\mathbb{R}^{2}}\left[z_{1} + Az_{2} - \frac{y}{4}\mathbb{E}^{\mathbb{P}}\left((z_{1} + S_{T}z_{2})^{2}\mathbb{1}_{z_{1}+S_{T}z_{2}>0}\right)\right]$$

Right-hand side can be solved, and by means of the duality relation between u and v, we get:

$$u(x) = 2\sqrt{x\left(1+\frac{(A-1)^2}{e^{\sigma^2 T}-1}\right)},$$

$$\hat{\mathbb{Q}}(m{d}\omega) = rac{m{e}^{\sigma^2 T} - m{A} + m{S}_T(m{A} - m{1})}{m{e}^{\sigma^2 T} - m{1}} \mathbb{P}(m{d}\omega)$$

and

$$\hat{X}_{T} := x rac{\left(e^{\sigma^{2}T} - A + S_{T}(A-1)
ight)^{2}}{\left(e^{\sigma^{2}T} - 1 + (A-1)^{2}
ight)\left(e^{\sigma^{2}T} - 1
ight)}.$$

(D) (A) (A)

- Functional setting and methodology to solve robust problem in general "markets with uncertainties" is proposed.
- Obtained minimax equality, conjugacy of value functions and existence of optimal wealth... without a worst-case model!
- Currently some classical results can only be recovered in the complete case, and approach is not readily generalizable.
- Worst-case measure can be explicitly (or numerically) computed when uncertainty set is determined by finitely many moment constraints. Expressions hold however in great generality.
- In the non-dominated case one can itroduce similar spaces; nevertheless, the absolute key topological result regarding the indentification of the "dual of L₁" remains ellusive ... and probably would not yield function-like elements!

Bibliography I

- D. Kramkov, W. Schachermayer: "The Asymptotic Elasticity Of Utility Functions And Optimal Investment In Incomplete Markets", Ann. Appl. Probab. 9 (1999), no. 3, 904–950.
- A. Schied, C.-T Wu: "Duality theory for optimal investments under model uncertainty ", Statist. Decisions 23 (2005), no. 3, 199–217.
- I. Karatzas, J. Lehoczky, S. Shreve: "Optimal portfolio and consumption decisions for a small investor on a finite horizon" SIAM J. Control Optim. 25 1557-1586
- A. Kozek. " Orlicz spaces of functions with values in banach spaces." *Comment. Math. Prace Mat.*, 1976.
- A. Kozek. "Convex integral functionals on orlicz spaces." *Comment. Math. Prace Mat.*, 21, no. 1:109–135, 1980.
- J. Musielak: "Orlicz spaces and Modular spaces", Lecture notes in Mathematics, 1034, Springer-Verlag, Berlin 1983.

- コン (雪) (ヨ) (ヨ)

Bibliography II

H.Nakano: "Topology and linear topological spaces".

- C. Léonard: "Minimization of energy functionals applied to some inverse problems "Appl. Math. Optim. 44 (2001), no. 3, 273–297
- C. Léonard: "Minimization of entropy functionals "J. Math. Anal. Appl. 346 (2008), no. 1, 183–204.
- J. Backhoff, J. Fontbona: "Robust utility maximization without model compactness " (submitted, http://arxiv.org/abs/1405.0251)