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Continuous Time Financial Market
Filtered probability space (Ω,F, (F)t≤T ,P), P reference law.
Market consists of d stocks and a risk-less bond, S =

(
Si)

0≤i≤d .
S continuous (or loc. bounded) semimartingale.
The value of portfolio (X0, π) at time t is Xt = X0 +

∫ t
0 πudSu.

Me(S) =
{
P̃ ∼ P : S is a P̃-loc. martingale

}
6= ∅.

Admissible wealths starting from x

X (x) =

{
X ≥ 0 : Xt = X0 +

∫ t

0
HudSu with X0 ≤ x

}

Utility Functions on (0,∞)

U : (0,∞)→ (−∞,∞) is strictly increasing, strictly concave and
continuously differentiable. It satisfies INADA if U ′(0+) =∞ and
U ′(∞) = 0. Its asymptotic elasticity is AE(U) := lı́m sup

x→∞

xU′(x)
U(x) .
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Utility maximization problems

Standard utility maximization
Agent tries to maximize expected final utility starting from x > 0, under
the fixed (subjective) model Q ∼= P. Value function is

uQ(x) := sup
X∈X (x)

EQ[U(XT )].

Robust utility maximization
Actual probabilistic model (law) possibly unknown (model uncertainty)
but there is a set Q of reasonable possible models.
Pessimistic agent tries to maximize expected final utility of the
worst-case model. Value function is

u(x) := sup
X∈X (x)

ı́nf
Q∈Q

EQ[U(XT )].
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Duality in financial market models

V (y) := sup
x>0

[U(x)− xy ], y > 0 conjugate of U.

“Supermartingale densities ” w.r.t. (subjective) model Q
YQ(y) := {Y ≥ 0,YX is aQ− supermartingale ∀X ∈ X (1),Y0 = y}.
Generalizes set of densities wrt. Q of e.g. risk-neutral measures.

For all x > 0,X ∈ X (x),Q,

EQ[U(XT )] ≤ ı́nf
y>0

(
ı́nf

Y∈YQ(y)
EQ[V (YT )] + xy

)

=⇒ vQ(y) := ı́nf
Y∈YQ(y)

EQ[V (YT )] candidate conjugate of uQ(x),

=⇒ v(y) := ı́nf
Q∈Q

vQ(y) candidate conjugate of u(x).
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Robust case under model compactness
Dual involves v(y) = ı́nf

Q∈Q
ı́nf

Y∈YP(y)
E
[

dQ
dP V

(
YT

dQ/dP

)]
.

Primal requires Minimax: sup
X∈X (x)

ı́nf
Q∈Q

EQ [U (XT )] = ı́nf
Q∈Q

uQ(x).

Conditions on Q are needed. [SchiedWu05] consider:
1 Q convex,
2 P(A) = 0 ⇐⇒ Q(A) = 0 ∀Q ∈ Q, and
3 dQ

dP :=
{

dQ
dP : Q ∈ Q

}
closed in L0(P) (equiv. σ(L1,L∞)−compact).

Theorem ([SchiedWu05] (see also Gundel ∼ 03))
Then minimax equality holds and u, v are conjugate. Under additional
assumptions (e.g. AE(U) < 1), everything is attained:

u(x) = uQ̂(x) , X̂T = (U ′)−1(ŶT/ẐT )

where ŷ ∈ ∂u(x), Ŷ ∈ Y(ŷ) and the pair
(

Ẑ = dQ̂
dP , Ŷ

)
attains the

double infimum in the dual problem for such (x , ŷ).
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Ẑ = dQ̂
dP , Ŷ
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Open questions and our motivation

No general characterization of Q̂.
There are simple (and reasonable) uncertainty sets, that are not
weakly compact in L1(P). e.g.:

Q = {Q� P : EQ[ST ] ≥ A}, A > 0.

More generally, Q determined by “moment” or distributional
constraints

Q =
⋂

i

{Q� P : EQ[Fi(S)] ∈ Ci}

arise naturally and may fail to be compact.
Goal: Find a framework to study the above problems.
Goal: use general convex duality to describe the worst measure.

Julio Daniel Backhoff () Workshop London Nov. 2014 29/11/2014 7 / 20



Open questions and our motivation

No general characterization of Q̂.
There are simple (and reasonable) uncertainty sets, that are not
weakly compact in L1(P). e.g.:

Q = {Q� P : EQ[ST ] ≥ A}, A > 0.

More generally, Q determined by “moment” or distributional
constraints

Q =
⋂

i

{Q� P : EQ[Fi(S)] ∈ Ci}

arise naturally and may fail to be compact.
Goal: Find a framework to study the above problems.
Goal: use general convex duality to describe the worst measure.

Julio Daniel Backhoff () Workshop London Nov. 2014 29/11/2014 7 / 20



Modular spaces in the robust problem

Assumption
Our U satisfies INADA, U ≥ 0 and U(∞) =∞.

We know:

u(x) = sup
X∈X (x)

ı́nf
Q∈Q

EQ [U (XT )] ≤ ı́nf
y≥0

 ı́nf
Q∈Qe

Y∈YP(1)

EP

[
dQ
dP

V

(
yYT
dQ
dP

)]
+ xy

 ,
Thus, we care only of Q ∈ Q such that Z := dQ

dP belongs to the
Modular space (more on it later on...):

LI =
{

Z ∈ L0(P) s.t. ∃α > 0, I(αZ ) <∞
}

where I(z) := ı́nfY∈YP(1) EP
[
|z|V

(
YT (ω)
|z|

)]
.
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Convex Modular

I : LI 7→ [0,∞] is a Convex Modular (and LI its Modular Space), since:

I(0) = 0
I(Z ) = I(−Z )

For every Z ∈ LI there exists α > 0 st. I(αZ ) <∞
[I(ξZ ) = 0 for every ξ > 0] implies Z = 0
I is convex
I(Z ) = sup0≤ξ<1 I(ξZ )

We may apply theory of [Musielak] or [Nakano]:

|Z |lI := ı́nf{α > 0 : I(Z/α) ≤ 1} and |Z |aI := ı́nf
{

1
k + I(kZ )

k : k > 0
}

are equivalent norms
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Relation to the robust problem

Suppose dQ/dP ⊂ LI :
If Z := dQ/dP ∈ LI then C(x)|Z |I ≥ uQ(x) ≥ c(x)|Z |I
Notice v(y) = y ı́nfZ I(Z/y) and |Z |aI ≤ 1 + I(Z )

So if LI is reflexive or I inf-compact, v(y) is attained
⇒We must explore topology of LI and related spaces ...
Let us define:

EI =
{

Z ∈ L0 s.t. ∀α > 0, I(αZ ) <∞
}

J(X ) = sup
Y∈YP(1)

E[YU−1(X )] and LJ ,EJ accordingly

Technical assumption: I, J remain the same when computed using
{Y ∈ YP(1) : YT > 0 and ∀β > 0,E[V (βY )] <∞} instead of YP(1)
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Topology

Under the technical assumption:

Theorem ([B.,Fontbona14])
Hölder inequality holds between LI and LJ

The dual of EI is isom. isomorphic to LJ

Most importantly:

Theorem ([B.,Fontbona14])
If YP(1) is not u.i., then EI and LI cannot be reflexive.

In the complete case YP(1) is u.i.
In the incomplete case this happens in pathological cases only.
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Main result

Theorem ([B.,Fontbona14])
Under the technical assumption (e.g. 1 ∈ YP(1)) and:
Q is convex and Qe 6= ∅
P(A) = 0 ⇐⇒ ∀Q ∈ Q : Q(A) = 0
dQ
dP ∩ LI(P) is σ(LI ,LJ)−closed and ∃Q ∈ Qe s.t. uQ(·) <∞

If LI = EI (e.g. AE(U) < 1), then the minimax equality holds, u and v
are conjugate and there is an optimal X ∈ X (x).

If further EI is reflexive (e.g. market completeness + U−1 ∈ ∆2) then
there is a worst Q̂ ∈ Q and most results in [SchiedWu05] hold also.

Central arguments:
U(X (x)) contained in weak*-compact set in LJ .
Under reflexivity, simply use subsequence principle in EI .
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Uncertainty set as linear/convex constraints

We consider uncertainty set Q such that

dQ
dP

=

{
dQ
dP
∈ LI : Θ

(
dQ
dP

)
∈ C

}
for Θ : LI(Ω,P)→ B a linear operator of integral type, taking values in
some vector space B (possibly∞-dim.) and C ⊆ B a convex subset.

More precisely, there is a measurable function θ : Ω→ B such that

Θ(Z ) = EP(Zθ) ∈ B

This includes moment constraints on “ observables” of any dimension;
in particular, any restriction (or belief) of distributional type on prices or
assets can be described in this way
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Uncertainty set as convex constraints: complete case
Minimization problem is embedded into the spaceMf of finite signed
measures M on Ω:

Φ(M) :=

{
I
(

dM
dP

)
=
∫ dM

dP V
(

[dM
dP ]−1

)
P(dω) if M ≥ 0 and M� P

+∞ otherwise
,

adding the constraint EP(dM
dP ) = 1. We want:

PC

Minimize Φ(M) subject to Θ1(M) ∈ C1 , M ∈Mf

where Θ1(M) = (
∫

Ω θdM,
∫

Ω 1dM) ∈ B1 = B × R and C1 = C × {1}

DC

sup
{

ı́nf
x∈B̄1∩C1

〈g, x〉 −
∫

U−1(〈g, θ(·)〉)dP : g ∈ B∗1

}
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Finding the minimizer

We adapt some results in [Léonard08], since our functions do not fulfil
a relevant hypothesis therein...

Theorem ([B.,Fontbona14])
Under above assumptions and ours on U,V:

There is dual equality PC = DC
If C1 ∩Θ1(dom(Φ)) 6= ∅, PC has a unique solution in LI

If moreover C1 ∩ icor(Θ1(dom(Φ))) 6= ∅ the solution of PC is given
by

Q̂ =
dU−1

dz
(< g̃, θ >)dP.

where g̃ solves DC.

Here, icor(A) = {a ∈ A|∀x ∈ aff (A), ∃t > 0 tq. a + t(x − a) ∈ A}.
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Example
Consider on

(
Ω,F, {Ft}Tt=0 ,P

)
, and for t ≤ T , the 1d-diffusion

dSt = St{bdt + σdWt}, S0 = 1

Unique risk neutral measure is dP∗/dP = exp
{
− b
σWT − b2

2σ2 T
}
.

We take U(x) = 2
√

x , x ∈ (0,∞), thus LI = L2.
For A ≥ 0, consider the uncertainty set

Q = {Q� P : EQ(ST ) ≥ A}

which is not closed in L0 and not bounded in L2, but is weakly
closed in L2.
Constraint qualification condition holds by Girsanov Thm.
We now assume eσ

2T > A > 1 for simplicity.
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Solution
By Fenchel duality, it follows:

ı́nf
Q∈Q

EP
[

dQ
dP

V
(

yYT
dP
dQ

)]
= sup

R2

[
z1 + Az2 −

y
4
EP
(
(z1 + ST z2)

2
1z1+ST z2>0

)]
Right-hand side can be solved, and by means of the duality relation
between u and v , we get:

u(x) = 2

√
x
(

1 +
(A− 1)2

eσ2T − 1

)
,

Q̂(dω) =
eσ

2T − A + ST (A− 1)

eσ2T − 1
P(dω)

and

X̂T := x

(
eσ

2T − A + ST (A− 1)
)2(

eσ2T − 1 + (A− 1)2
) (

eσ2T − 1
) .
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Functional setting and methodology to solve robust problem in
general “markets with uncertainties” is proposed.
Obtained minimax equality, conjugacy of value functions and
existence of optimal wealth... without a worst-case model!
Currently some classical results can only be recovered in the
complete case, and approach is not readily generalizable.
Worst-case measure can be explicitly (or numerically) computed
when uncertainty set is determined by finitely many moment
constraints. Expressions hold however in great generality.
In the non-dominated case one can itroduce similar spaces;
nevertheless, the absolute key topological result regarding the
indentification of the “dual of LI” remains ellusive ... and probably
would not yield function-like elements!
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C. Léonard: “ Minimization of energy functionals applied to some
inverse problems ” Appl. Math. Optim. 44 (2001), no. 3, 273–297
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